Sanesco Blog

Effects of Stress on Memory and the Hippocampus

Share

Share on facebook
Share on twitter
Share on linkedin

Stress and the HPA Axis

What are the effects of stress on memory and the hippocampus? There are quite a few, it turns out. Let’s start with a look at why a healthy bodily response to stress is necessary for survival in all animals, including humans.

Responding to stress allows us to adapt and change with our environment.1 Our bodies cannot stay in a relaxed state during stressful events, so upon encountering a stressor, the brain sends signals to the rest of the body to get ready to fight or flee. The hypothalamus-pituitary-adrenal (HPA) axis is the brain’s control center for this reaction to stress.2

Norepinephrine, epinephrine, and cortisol are some of the main signals the body uses to initiate the fight-or-flight response.3 They redirect metabolism to the limbs, slow digestion, increase blood sugar and blood pressure, and provide energy for conquering or running from the stressful situation.

Animals need this physiological change to happen in their bodies, as usually, the stressor is a predator that would require huge amounts of energy to run from or fight. Humans, while eliciting a parallel physiological response to stress as other animals, do not usually need to actually run from or fight off a stressor.

Our stressors are arguments, embarrassing social situations, deadlines at work, college course loads, and other situational factors we deal with daily. Although these stressors shouldn’t require us to prepare to sprint, our bodies still respond with a fight-or-flight activation of the HPA axis.4 Stress can cause a cascade of problems in humans due to this unnecessary redirection of metabolism and excitation. Cortisol is the most notorious of the stress hormones and over-secretion of it can cause problems throughout the entire body.

Effects of Stress on the Hippocampus

The HPA axis works in conjunction with many other areas of the brain and glands throughout the body. The hippocampus, located in the medial temporal lobe of the brain, is necessary for cognitive functions such as learning, memory, and regulation of behavior.5 It plays a key role in gathering and encoding information and then later retrieving that information.6

During times of stress, your brain needs to focus on sensory stimuli and quick problem-solving, so hippocampus function is altered. This is part of why upon unexpectedly seeing a romantic interest or giving a public speech we forget simple things like our address or what we had for breakfast.

The hippocampus is less functional during times of both acute and chronic stress. There are corticosteroid (cortisol) receptors all over the hippocampus, which is why stress can so readily impede this part of the brain.7

The two important receptors to know are called MRs (mineralocorticoid receptors) and GRs (glucocorticoid receptors). MRs have a high affinity for cortisol and are bound to cortisol even when a stress response isn’t occurring, which is necessary for normal hippocampus function and flow of information.8 GRs have much less affinity for cortisol and are typically only activated when cortisol levels are high (when you are stressed). When GRs are activated, the neuronal formation of new memories is suppressed.9

This balance of cortisol promoting information flow but hindering hippocampus function during times of stress is necessary for a healthy response to stress.

Effects of Stress on Memory and Damage to the Hippocampus

Chronic stress can cause long-term damage to the hippocampus. In fact, the hippocampus itself has been shown to shrink in size in people suffering from an ongoing HPA axis stress response.10

Nerve cells, the body’s way of conducting information and signals from one part to another, are typically highly branched or elongated. Stress causes reduced nerve branching and development and even causes nerve cell death in the hippocampus.11 Nerve cells are also less elongated in individuals with stressful lifestyles or who grew up in a stressful household.12

The GRs in the hippocampus become overactivated with ongoing stress, which prevents nerve cell excitation.13 The combination of hippocampus shrinkage, nerve cell damage, and overactivation of GRs causes an inability to retrieve and form memories.14 This explains why both short and long-term stress can cause negative effects like memory lapses and poor focus.

It is common for people to be incapable of recalling the details of a traumatic event, which is why it can be inconclusive to put victims of heinous crimes on trial or to ask a driver the details of a car wreck. Cortisol released during a stress response has also been shown to have negative effects on memory (specifically damaging contextual memory), meaning memories may be formed but their context is ambiguous.15

For example, repeated stressful stimuli from a traumatic situation (such as combat) can cause severe anxiety and PTSD where one can recall and relive the general state of fear, but not the details of the situation that provoked fear. Stress in early childhood is also associated with diminished nerve function and reduced capacity for memorizing information.16

It is possible to restore hippocampus function and improve memory through lifestyle modifications and various restorative therapies for HPA axis balance.17 Adaptogens are herbal extracts which can muffle the effects of both overactive and underactive stress responses.18 Rhodiola is an example of an adaptogen shown to reduce cortisol levels and promote higher tolerance to stress effects.19

If you have trouble with memory, consider examining possible imbalances in your HPA axis, supplementing with adaptogens such as Rhodiola, Ashwagandha, or Tulsi, and addressing lifestyle factors that may be increasing your stress level.

 

Resources

  1. Joëls, M., & Baram, T. Z. (2009). The neuro-symphony of stress. Nature Reviews. Neuroscience, 10(6), 459–466. http://doi.org/10.1038/nrn2632
  2. Van Ast, V. A., Cornelisse, S., Marin, M.-F., Ackermann, S., Garfinkel, S., & Abercrombie, H. C. (2013). Modulatory mechanisms of cortisol effects on emotional learning and memory: Novel perspectives. Psychoneuroendocrinology, 38(9), 1874–1882. http://doi.org/10.1016/j.psyneuen.2013.06.012
  3. Joëls, M., Karst, H., Krugers, H. J., & Lucassen, P. J. (2007). Chronic stress: Implications for neuronal morphology, function and neurogenesis. Frontiers in Neuroendocrinology, 28(2-3), 72-96. doi:10.1016/j.yfrne.2007.04.001
  4. Joëls (2007), Ibid.
  5. Hanson JL, Chandra A, Wolfe BL, Pollak SD (2011) Association between Income and the Hippocampus. PLOS ONE 6(5): e18712. doi: 10.1371/journal.pone.0018712
  6. Züst MA, Colella P, Reber TP, Vuilleumier P, Hauf M, et al. (2015) Hippocampus Is Place of Interaction between Unconscious and Conscious Memories. PLOS ONE 10(3): e0122459. doi: 10.1371/journal.pone.0122459
  7. Abercrombie, H. C., Jahn, A. L., Davidson, R. J., Kern, S., Kirschbaum, C., & Halverson, J. (2011). Cortisol’s effects on hippocampal activation in depressed patients are related to alterations in memory formation. Journal of Psychiatric Research, 45(1), 15–23. http://doi.org/10.1016/j.jpsychires.2010.10.005
  8. Joëls (2009), op. cit.
  9. Joëls (2009), Ibid.
  10. Conrad, C. D., Mauldin-Jourdain, M. L., & Hobbs, R. J. (2001). Metyrapone Reveals That Previous Chronic Stress Differentially Impairs Hippocampal-dependent Memory. Stress (Amsterdam, Netherlands), 4(4), 305–318.
  11. Joëls (2007), op. cit.
  12. Conrad, op. cit.
  13. Joëls (2009), op. cit.
  14. Züst, op. cit.
  15. Van Ast, op. cit.
  16. Hanson, op. cit.
  17. Joëls (2007), op. cit.
  18. Ishaque, S., Shamseer, L., Bukutu, C., & Vohra, S. (2012). Rhodiola rosea for physical and mental fatigue: a systematic review. BMC Complementary and Alternative Medicine, 12, 70. http://doi.org/10.1186/1472-6882-12-70
  19. Ishaque, Ibid.
Sophie Thompson

Sophie Thompson

Sophie recently obtained her degree in Biology from UNCA in Asheville. Born and raised in Asheville, her hobbies include painting, writing and spending quality time with her dog and her family.

Disclaimer: The information provided is only intended to be general educational information to the public. It does not constitute medical advice. If you have specific questions about any medical matter or if you are suffering from any medical condition, you should consult your doctor or other professional healthcare provider.

Clinician Resources

Download a Sample Report

Stay up to date with sanesco

Other Related Blogs

Follow Us

Get Connected

Get Setup and start today

Sign Up for Our Newsletter

NeuroLab® and Sanesco Sample Patient Report

Receive a sample report of our most comprehensive profile, the HPA-G Complete which includes seven major neurotransmitters, seven major hormones and three neuroendocrine ratios.
NeuroLab CARE package
Overview

One of our feel-good neurotransmitters; when it is deficient, we can suffer mood disorders, sleep issues and carb cravings.